2023 Consumer Confidence Report for Public Water System CITY OF BYNUM BLACKLAND SYSTEM - TX1090048 This is your water quality report for January 1 to December 31, 2023 For more information regarding this report contact: CITY OF BYNUM BLACKLAND SYSTEM provides surface water and ground water from Brandon-Irene WSC/Lake Aquilla located in Hill County, TX. Buster Russell - Operator: (254) 479-0750 City of Bynum - (254) 623-4400 Este reporte incluye informacion importante sobre el aqua para tomar. Para asistencia en Espanol, favor de llamar al telefono (254) 479-0750. # Public Participation The City of Bynum Council Meetings are held the 2nd Wednesday of each month. #### Information about your Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. # City of Bynum Blackland System 2023 Water Quality Test Results - TX1090048 ### Information about Source Water CITY OF BYNUM BLACKLAND SYSTEM purchases water from BRANDON-IRENE WSC. BRANDON-IRENE WSC provides purchase surface water from Aquilla Lake, Hill County, Texas. No Source Water Assessment for your drinking water source(s) has been conducted by the TCEQ for your water system. The report describes the susceptibility and the types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information in this assessment allows us to focus our source water protection strategies. | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination | |-------------------------|-----------------|---------------------------|-------------------------------|-----------------|-----------------|-------|-----------|---| | Copper | 09/28/2021 | 1.3 | 1.3 | 0.2512 | 0 | ppm | N | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. | | Disinfection By-Product | Collection Date | Highest Level
Detected | Range of
Individual Sample | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Haloacetic Acids (HAA5 | 2023 | 40 | 39.9 - 39.9 | No goal for the | e 60 | ppb | N | By-product of drinking water disinfection. | | Total Trihalomethanes (TTHM) | 2023 | 73 | 72.6 - 72.6 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | |--------------------------------|------------------|-----------------------|-----------------------|------------------------|--|-----|---|--| | *The value in the Highest Leve | or Average Detec | ted column is the hig | hest average of all T | THM comple as a little | la a la chadada da la chada | | | | lue in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year | Inorganic Contaminants | Collection Date | Highest Level
Detected | Range of
Individual Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination | |-----------------------------------|-----------------|---------------------------|--------------------------------|------|-----|-------|-----------|--| | Nitrate [measured as
Nitrogen] | 2023 | 1 | 0.692 - 0.692 | 10 | 10 | ppm | N | Runoff from fertilizer use; Leaching from septitanks, sewage; Erosion of natural deposits. | ### **Disinfectant Residual** | isinfectant Residual | Year Year | Average Level | Range of Levels Detected | MRDL | MRDLG | Unit of
Measure | Violation (Y/N) | Source in Drinking Water | |----------------------|-----------|---------------|--------------------------|------|-------|--------------------|-----------------|--| | hloramines (Total) | 2023 | 1.52 | 1.19 2.61 | 4 | 4 | Ppm | N | Water additive used to control microbes. | ### **Violations** | Chlorine | | | | |--|----------------------------|-------------------|---| | Some people who use water containing chlor
MRDL could experience stomach discomfort | rine well in excess of the | MRDL could experi | ence irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the | | Violation Type | Violation Begin | Violation End | Violation Explanation | | Disinfectant Level Quarterly Operating Report (DLQOR). | 07/01/2023 | 09/30/2023 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | # Brandon-Irene WSC 2023 Water Quality Test Results - TX1090018 ### Information about Source Water BRANDON-IRENE WSC purchases water from AQUILLA WSD. AQUILLA WSD provides purchase surface water from Lake Aquilla, Hill County, Texas. TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact Brandon-Irene W\$C at (254) 632-4120. | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination | |-----------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|---| | Copper | 09/14/2022 | 1.3 | 1.3 | 0.1351 | 0 | ppm | N | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. | | Disinfection By-Products | Collection Date | Highest Level
Detected | Range of Individual
Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--------------------------|-----------------|---------------------------|--------------------------------|-----------------------|-----|-------|-----------|--| | Haloacetic Acids (HAA5) | 2023 | 16 | 12.4 - 21.3 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | ^{*}The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year | Total Trihalomethanes (TTHM) | 2023 | 13 | 10.6 - 14.2 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | |------------------------------|--|----|-------------|-----------------------|----|-----|---|--| | 4.1002 | and the second s | | | | | | | | ^{*}The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year | Inorganic Contaminants | Collection Date | Highest Level
Detected | Range of Individual
Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--------------------------------|-----------------|---------------------------|--------------------------------|------|-----|-------|-----------|--| | Arsenic | 10/18/2022 | 3.8 | 2.4 - 3.8 | 0 | 10 | ppb | N | Erosion of natural deposits; Runoff from orchards;
Runoff from glass and electronics production wastes | | Barlum | 10/18/2022 | 0.083 | 0.072 - 0.083 | 2 | 2 | ppm | N | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. | | Chromium | 10/18/2022 | 13 | 8.4 - 13 | 100 | 100 | ppb | N | Discharge from steel and pulp mills; Erosion of natural deposits. | | Fluoride | 10/11/2021 | 1.9 | 0.769 - 1.9 | 4 | 4.0 | ppm | N | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. | | Nitrate [measured as Nitrogen] | 2023 | 0.117 | 0.0517 - 0.117 | 10 | 10 | ppm | N | Runoff from fertilizer use; Leaching from septic tanks sewage; Erosion of natural deposits. | | Radioactive Contaminants | Collection Date | Highest Level
Detected | Range of Individual
Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--------------------------|-----------------|---------------------------|--------------------------------|------|--|-------|-----------|--------------------------------| | Combined Radium 226/228 | 06/12/2018 | 1.5 | 1.5 - 1.5 | 0 | 5 | pCi/L | N | Erosion of natural deposits. | | | | | | | Andreas and the second of the Control Contro | | | | #### **Violations** | 49 | B_ (| | | | | |----|------|---|------|----|--| | C | m: | m | 22 8 | 24 | | | | | | | | | Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could | experience stomach discomfort. | | | population water containing chlorine wer in excess of the MKDL could | |--|-----------------|---------------|---| | Violation Type | Violation Begin | Violation End | Violation Explanation | | Disinfectant Level Quarterly Operating Report (DLQOR). | 01/01/2023 | 03/31/2023 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | | | | | #### Consumer Confidence Rule The Consumer Confidence Rule requires community water systems to prepare and provide to their customers annual consumer confidence reports on the quality of the water delivered by the systems. | Control of the Contro | Old Constant Control Control | | , and ayatema. | |--|------------------------------|---------------|--| | Violation Type | Violation Begin | Violation End | Violation Explanation | | CCR ADEQUACY/AVAILABILITY/CONTENT | 07/01/2023 | 2023 | We failed to provide to you, our drinking water customers, an annual report that adequately informed you about the quality of our drinking water and the risks from exposure to contaminants detected in our drinking water. | | | | | accepted in our drinking water. | | | | | | ### **Lead and Copper Rule** The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarlly by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials. | Violation Type | Violation Begin | Violation End | Violation Explanation | |------------------------------------|-----------------|--|---| | FOLLOW-UP OR ROUTINE TAP M/R (LCR) | 10/01/2022 | 08/10/2023 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of | | FOLLOW-UP OR ROUTINE TAP M/R (LCR) | 10/01/2023 | And the state of t | the quality of our drinking water during the period indicated. We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | ### **Definitions and Abbreviations** Definitions and Abbreviations The following tables contain scientific terms and measures, some of which may require explanation. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples. Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level goal or The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of MRDLG: disinfectants to control microbial contaminants. MFL million fibers per liter (a measure of asbestos) mrem: millirems per year (a measure of radiation absorbed by the body) na: not applicable. NTU nephelometric turbidity units (a measure of turbidity) pCi/L picocuries per liter (a measure of radioactivity) ppb: micrograms per liter or parts per billion ppm: milligrams per liter or parts per million ppq parts per quadrillion, or picograms per liter (pg/L) ppt parts per trillion, or nanograms per liter (ng/L) Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.